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ABSTRACT

Amorphous Fe40N:40Pl 1 B 6 was compressed in the diamond anvil cell up to 250

kbar pressure and the pressure was measured as a function of position with the

ruby fluorescence method.

The pressure distribution indicates that the flow stress, Gy, of the material

under pressure is 17 -1 kbar ('173 kg/mm 2) . The pressure dependence of the flow

stress is about 0.4 -0.1% per 1 kbar of hydrostatic pressure.

The value of the flow stress under pressure is about 30% smaller than the

flow stress at zero pressure. The decrease in flow stress is ascribed to work-

softening, and a work softening coefficient da/de <.5 is derived.
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1) Introduction

The flow stress of metallic glasses under high pressure is of interest, since

the pressure dependence of the flow stress makes it possible, in principle, to

discriminate between the various theoretical models for plastic flow in glassy

metals.

The first measurement of the influence of hydrostatic pressure on flow

was carried out by Davis and Kavesh,1) who measured the yield stress in compression

of Pd77 .5Cu6Si 16.5 at hydrostatic pressures up to 6.2 kbar. The pressure dependence

of the yield stress was found to be quite small, about 0.5% per kilobar of applied

pressure, which is comparable to the pressure dependence of crystalline metals.

Because the pressure dependence of the elastic constants of amorphous metals is

not known, no firm conclusions could be drawn as to which theoretical model would

best fit the data.

Very much higher pressures can be applied in the diamond anvil press. At

250 kbar, a value which is relatively easily achieved without undue risk of fractur-

ing the diamonds, the applied stress exceeds the yield stress of a metallic

glass by more than one order of magnitude. The material flows in a semi-fluid

like fashion and extensive plastic flow, with strain of 20% or more, occurs with-

out fracturing or separating the material.

The ability to study the influence of large plastic strains on the mechanical

behavior of macroscopically brittle materials is an important advantage of the

diamond cell.

In this paper we report i) the pressure distribution of an Fe-Ni based

metallic glass compressed in the diamond anvil cell and ii) the analysis used to

derive from the measured pressure distribution the yield stress and it's pressure

dependence.
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2) Theoretical pressure distribution

The homogeneous compression of a thin disc between infinitely stiff plates

is discussed, e.g., by Polakowski and Ripling, under the assumption that the

flow stress does not depend on pressure. The pressure distribution is derived

from a consideration of the equilibrium between the frictional forces at the

specimen-anvil interface and the gradient of the radial stress in the specimen,

a r In polar coordinates, (see Fig. 1) with z perpendicular to the plane of the

disc, the forces on a differential element of the disc of dimension h.dr.r.d#,

where h is the disc thickness, balance each other if:

dO .h. - 2.dr.F (1)

F is the friction force per unit area. The factor two takes into account that

friction occurs both at the top and the bottom surface.

At low pressures, the friction force is given by Coulombs friction law as:

F = L'.Pz (2)

where U is the coefficient of friction and P is the normal stress on the disc

surface. A typical value for U for a crystalline metal, in contact with a hard

unlubricated surface would be 0.15.3)

Equation (2) is valid only if the friction force F is lower than the critical

shear stress Tc of the material being tested. For F k Tc, the material deforms by

"smearing". The condition is also known as sticking, since there is no relative

movement at the specimen-anvil interface. Transition from sliding to smearing

occurs at a critical value P':
z

P' -Tc/P (3)
z c

For P >P', the friction force is constant and equal to T . To estimate at
z z c

which value of P this transition might occur for a metallic glass, we take

- 0.15, and assume further that the ruby particles which reside at the inter-

face in order to measure the pressure, have no influence on the friction coef-

ficient. T is about 10 kbar, and from eq. (3) we would therefore expect Pz to

c z
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be about 60 to 70 kbars. Above this value, equation (2) is replaced by the

sticking condition:

F =T (P) (4)

The notation T (P) was chosen to indicate that Tc may depend on the hydrostatic

pressure P. For later, we note that P and Pz can be linked by Tresca's yield

criterion:

P = P z- (4/3)T (P) (5)

In the diamond press Pz is us,-ally much larger than Tc , and the stress state is

largely hydrostatic in nature.

We now consider the pressure distribution in more detail. For 0<Pz<T /U,

we obtain from equations (1) and (2):

dor = (2u/h)Pz dr (6)

Simple considerations show that ar - a (see ref. 2). For simplicity, we use

Tresca's yield criterion to link 0r and Pz

a - P - 2T (P) (7)r z c

We could equally well use van Mises yield criterion, in which case the critical

shear stress T is replaced by the critical octahedral shear stress T c t. In~c

our case, Tc and TOct are related by

T = 1.1547-T (8)

and differ therefore by %16%. With the aid of Eq. (5) and (7) we can rewrite

Eq. (6) as a relation between P and r, i.e., the two variables measured in the

experiment. For this purpose it is convenient to express the pressure dependence

of Tc (P) explicitly as:

TC(P) - T 0(1 + &P) (9)

where T0 represents the critical shear stress under zero applied hydrostatic

pressure and & the first order coefficient of T .c is a very small number,c

in the order of 0.004 kbar- . It's physical meaning and the theory

underlying e.g., (9) are discussed in section 6. Eq. (9) and (5) result in the



-4-

following first order relations between the differentials da, dP and dP:4z

dPz - (l+ -io) dP (10)

2dar = (1 - 2 TO dP (11)
r 3 0

Substitution of Eq. (5), (9), and (11) into Eq. (6), and integration yields

the following relation for P(r):

P(r) - C exp( _ 21.lr + C 12
Sh(l-2 To ) 2 (12)

4T2 o 113)_

where: C1  -T + 0 (o3
1 3 o 3+4T 0  (13

4T
0 (14)

2 3+4 T
Note that the hydrostatic pressure increases exponentially with distance. The

constants C1 and C2 were calculated under the assumption that the material at

the disc edge is free to expand. The bracket (1-2 T o) is a correction term

in the order of 10%.

At higher pressures, the boundary conditions expressed by Eq. (4) applies,

and Eq. (1), upon substitution of Eq. (11) can be rearranged as:
2T0 (P)

dr [1 - (2/3) T 0]h (

Eq. (15) reduces for the case of 0, i.e., a pressure independent critical

shear stress to: 2T( P  0) 2TdP 0- c (16)
dr h h

4)
which is widely used in the analysis of high pressure experiments . In

crystalline and amorphous metals T 0 0.05; i.e., the first order treatment of

the pressure dependence of the yield stress modifies Eq. (16) by a correction

in the order of 3% which is quite small compared to other sources of error.
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Equation (15) can be integrated if the functional dependence of T (P) isC

known. The usual procedure in high pressure research is to represent T (P) byC

the first order expansion of Eq. (9) in which case integration of Eq. (16)

yields:

0
P~r W C(exp ((-/ r )-1 17)

A series expansion of Eq. (17) shows that P is, in the first order, linear in r,

with a slope of 2T /h: 03

2T 2T 2 2 2T 3E2"3P(r) oh(i o r ( / + ( o(-2/3 To 6 "."

-23T0 R(23-r0 V0o

Contrary to one's intuition, the higher order terms are, however, not negligibly

small. A numerical evaluation shows, that for h = 15U, T = 10 kbar, = 0.0050

and a pressure P = 250 kbar, the linear term c,.ntributes 157 kbar (63%), the

second order term 62 kbar (25%), the third order term 16 kbar (6%), and the

remaining higher order terms 15 kbar (6%). Even the small pressure dependence

of the critical shear stress of crystalline metals can, therefore, introduce

noticeable curvature into P(r) of highly compressed specimen.

In the case that the critical shear stress depends exponentially (rather

than linearly) on pressure; i.e.:

T(P) = T exp(EP) (19)0

one obtains, after integration:

P(r) - In[l - 2 tor (20)

A series expansion of Eq. (20) shows that the functional dependence of P(r) is

very similar to that of Eq. (17):
2T 2T 2 2 2T 323o r o 0 & 2P(r) = h(-2/3 To )0 + (h(l-2/3 To0) 2 + (h(1-2/3 To0 3 (21)

Note that the first two terms of Eq. (21) are identical to those in Equation (18).

The difference between a linear and exponential pressure dependence is contained

in the third and higher order terms.
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Exponential pressure dependences of the form of Eq. 19 correspond to writing

the activation energy for thermally activated flow, AG(P) as:

AG(P) = AG(O) - P.AV (22)

where AV is the activation volume. AV and as defined in Eq. (19) are related

by: AV = E.kT (23)

where k is Boltzmann's constant and T the absolute temperature.

3) Experimental Procedure

The amorphous alloy Fe 4 0 Ni 4 0 PI 4 B6 was purchased from the Allied Chemical

Corporation in the form of a 25 smm wide and approximately 30 im thick ribbon
R

(trade name Metglass 2826). Small sections of the ribbon were mechanically

polished from both sides to a final thickness of about 20 Um. A diamond anvil

cell with culet face diameters of 600 m diameter was used to compress the

specimen. Small ruby particles were positioned at the specimen diamond inter-

face to measure the pressure distribution of the compressed specimen via the

pressure induced shift of ruby R1 fluorescence line. The observed shifts were

converted to pressure using the calibration of Barnett et al. 5)

P(kbar) = (X - 0 )-2.746 (24)

where X is the zero pressure wavelength of the ruby R1 line. Experimentally,

the pressure can be determined to an accuracy of ± 1 kbar. The calibration ex-

pressed in Eq. (24) applies, strictly speaking, only to situations in which the

pressure is purely hydrostatic. However, Eq. (24) still holds to a good approx-

imation when the pressure is not hydrostatic, as in the present case (see ref. 4

for more details).

The pressure was measured as a function of position, by moving the cell

relative to the stationary interrogating beam with the aid of two micrometers

of 10 jim graduation. In a typical experiment, the pressure distribution was

measured twice, first along a line through the center of the disc and then a

S -mom
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parallel line with an offset of 10 pm. After completion of these measurements,

and release of the pressure, the specimen was mounted with cold resin and

polished edgewise until it's cross section coincided with the center line along

which the pressure was measured. The cross section was photographed with an

optical microscope and the specimen thickness was determined from the photograph.

4) Experimental results

Fig. 2 shows the radial pressure distribution of a disc of amorphous

Fe 40Ni 40P 4B under an average applied pressure of about 100 kbar. The pres-

sure increases somewhat faster than linearly with distance, as expected fromI

theory. At very high pressures dP/dr decreases again as the pressure reaches a

peak of 245 kbar. The discontinuity at 20 kbar is associated with yielding.

Fig. 3 shows the cross section of the amorphous Fe 40Ni 40P4B6 alloy after

completion of the experiment. It can be seen that plastic flow under high pressure

is macroscopically homogeneous, without the formation of cracks or voids.

Etching the specimen with the same acidic solution which clearly delineates shear

bands introduced by bending (see Fig. (19) in ref. 6) did not reveal any slip

bands, possibly because the slip bands were too tightly spaced to be resolved

by optical microscopy.

Fig. 4 shows the pressure distribution of a specimen loaded as follows:

Firstly the specimen was loaded to an average applied pressure of about 20 kbar,

next, the specimen was completely unloaded, and finally, the specimen was re-

loaded with an average applied pressure of about 50 kbar. Note that the

pressure distribution above about 65 kbar is similar to that in Fig. 2, but

that there is now a pronounced transition region at low pressures, in which the

pressure increases only relatively slowly with distance.
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5) Analysis

A problem in the analysis of the above results is that experimental curves

contain both the friction controlled and sticking regimes. Although it is clear

that at very high pressures sticking boundary conditions must apply, it is not

obvious where the transition between the two regimes occurs. The estimate of

60 to 70 kbar in section 2 is predicated on a friction coefficient of 0.15,

which is reasonable for crystalline metals in contact with hard surfaces, but

does not necessarily apply to metallic glasses, decorated with small ruby particles,

and sliding against diamond.

The two regimes are described by three adjustable parameters: the friction

coefficient p, the critical shear stress at zero pressure To, and the pressure

coefficient of the critical shear stress E. The range of these parameters is

restricted. In particular, T cannot vary greatly from the critical shear stress0

6,7measured in more conventional experiments such as tension and bending . The

range of E is more difficult to assess, but one would be surprised if it were to

deviate more than a factor three from the value measured by Davis et al on an

amorphous Pd Si alloy, since the mechanical properties of the two metallic glasses

are similar.

The procedure used, therefore, was to select values for t and within the
0

above range in order to fit the experimental pressure distribution with Eq. (17)

and (20). Two such fits, are shown in Fig. 5 and 6. Fig. 5 demonstrates that

the experiment, within experimental accuracy can be fitted with T = 8.5 kbar0

and E = 0.0039. Fig. 6 illustrates that a value of T = 10.5 kbar, characteristic0

for the values obtained in conventional experiments, cannot fit the experimental

data.
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A corresponding analysis of Fig. 4 is difficult to carry out since the data

cover a smaller load range and the sample was loaded in two steps. Attempts

to fit the data with a single expression of the form of Eq. 12, 17 or 20 were

unsuccessful and suggested that the data of figure 4 contain two regimes. The

high pressure data 70<P<110 kbar data can be well fitted with a straight line of

slope 0.753, see Fig. 5. The data below 65 kbar can be well fitted with an

exponential pressure dependence, of the form P(r) = T exp(6r) with an exponent
0

6 of 0.0047, see Fig. 5. Crossover between the two fits occurs at 61 kbar. The

two regimes were assumed to represent the sticking and slipping regimes, respec-

tively. A linear fit to the data above 61 kbar corresponds to an approximation

of P(r) by the leading term of the series expansion of Eq. 18 and 21. A numeri-

cal evaluation of Eq. (18) and (20) shows that the leading term, at 90 kbar,

contributes about 85% to P(r). Given the restricted range of the data, an

approximately linear dependence of P or ris expected, as is indeed observed.

Equating the slope with the leading term in the series expansion yields a value

of 8.15 kbars for T0

The friction coefficient U. can be estimated both from the pressure at which

the transition between the two regimes occurs and from the curvature of P(r) below

60 kbar. The transition occurs at a critical pressure P' = 61 kbar, from which,z

via Eq.'s (5) and (3), a value of 0.12 for the friction coefficient. An analysis

of the curvature yields p - 0.05, but is, because of the small range of data,

not very reliable.

6) Discussion

One may wonder, why the friction regime, if it exists at all, is so much

smaller in Fig. 2. The different extent of the friction regime very likely

represents the different boundary conditions at the anvil edges. Fig. 2 was

obtained by loading the specimen in one step, to a peak of 250 kbar, with a

reduction in thickness from 20 to 15 Vm. The extruded material outside the die

Lmallah0
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exerts a residual radial stress comparable to the yield stress on the perimeter
of the material under the die. The gradient in Tr is therefore not just opposed

by the friction stress but also by the residual stress on the perimeter. The

situation at the edge is equivalent to the punch indentation problem for which

the lower bound solution is P = 4 T , which is twice the value of the freez o

edge case.

The data of Fig. 4 were obtained by pre-pressing the specimen, with sLb-

sequent unloading. An outward shift of the specimen, by relaxation during the

two loadings corresponds to a boundary condition which is closer to the free

edge case, with a corresponding development of the friction regime.

The value of the critical shear stress measured in this experiment lies

definitely below the value of 11 to 12.5 kbar measured in bending and tension

(6,7). Since it is known that details of the preparation influence the yield

stress of amorphous alloys, 3 specimens from the same spool from which the high

pressure specimen was prepared were also tested in bending, using the method

outlined in ref. 7. The average value obtained for T was 11.7 kbar.
0

The state of the metallic glass in the diamond cell differs from the state

of the material in more conventional tests in that it is both under high pressure

and deformed to a very large degree. The specimen of Fig. 2 was compressed from

20 to 15 pm which corresponds to a linear strain of 20% in the z direction. It

has long been suspected that extensive deformation of metallic glasses destroys

the strong short range order of these materials and lowers the flow stress.

The enhanced etching of shearbands has been explained with deformation induced

destruction of short range order 8 , and work-softening has been invoked to explain

the localization of shearbands. If we ascribe the lower value of T observed to

work-softening, and take, for simplicity the strain in the z-direction as a

LV
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measure of the strain, the work softening coefficient de /de < 1.4. This value

is well within the observation from bending experiments that work-softening, if

it occurs, must have a work softening coefficient smaller than 2.

The pressure coefficient of the critical shear stress of 0.0039 has an

estimated uncertainty of ± 0.001. Within experimental accuracy, the pressure

coefficient of amorphous Fe40 Ni4 0P1 4B6 is therefore identical to the pressure

coefficient of amorphous Pd Cu Si.

It is interesting to compare the pressure dependence of amorphous Fe 40Ni 40P 4B

with the pressure dependence of crystalline metals. The pressure dependence of

the flow stress in crystalline metals, at least in the well deformed state, arises

mostly from the variation of the effective elastic constant, C , with pressure,0

9)in which case

a (P) = oo[1 + (co/C )P] (24)
0 00 0 0

where C' is the dimensionless pressure derivative of C Note that Eq. (24) iso a

formally identical to Eq. (9), with

ClCo = (25)

00

Which elastic constants or combination of elastic constants is to be identified

with C depends on the mechanism controlling the flow stress and is discussed0

in more detail in ref. 9. Data on both C and C' are available for Fe:
0 0

E - 2241 kbar 0 )

G = 368 kbar
1 0 )

2

E" 5.28511)

G" - 1.90711)

and therefore:

E'/E - 0.00236 kbar
- 1

-i (27)
G'/G - 0.0022 kbar
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Thus, independent of the model for flow, is expected to be about 0.002, as

long as the flow stress is predominantly controlled by the pressure dependence

of the elastic constants.

Experimentally, one finds that the critical shear stress of Fe single

crystals varies with pressure 1 2 ) as 0.0065 kbar - . Measurements on polycry-

stalline Fe yield = 0.0048 in the Ludersband regime and = 0.0021 kbar - in

13)the uniform deformation, i.e., well deformed, regime The latter value

corresponds closely to elastic constant case. Metallic glasses can be viewed

14 2as crystalline solids with a high enough dislocation content ("10 /cm ) to

destroy the long range order. From this point of view one would expect that their

pressure dependence corresponds most closely to that of highly deformed crystals.

has 14)
Amorphous Fe 4 0 Ni 4 0 P1 4 B6 has Young's modulus of 1310 kbar , or about 60%

of Fe. Assuming that E' is similar to the crystalline case, which is not

unreasonable since the dimensionless quantity C' varies relatively little from
0

material to material and lies generally between 2 and 69, the pressure dependence

as described by E is calculated to be:

= 0.00403 kbar- 1  (28)

a value which is, undoubtedly somewhat fortuitously, very close to the measured

value. However, the estimate serves to show that from the crystalline point of

view, there is nothing unusual about the pressure dependence of the yield stress

of a metallic glass. Models which analyze the flow of metallic glasses in terms

15,16)of dislocations are therefore compatible with the present result. Flow

models based on free volume theory predict that the flow stress should vary with

pressure as B'/B, where B is the bulk modulus 1 7 ) . Since the bulk modulus of

18)metallic glasses is very similar to crystalline materials1 , an estimate along

the above lines with B = 5 yields a lower value of [ 0.025. However, given
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the experimental error limits on F, and the uncertainties on how to estimate C',
0

one must conclude that both approaches can account for the observed value of

0.0039. Precise measurements of the elastic constants and their pressure depen-

dence would allow to discriminate between the two models.

Summary

The metallic glass Fe 40Ni 40P 4B6 was deformed at pressures up to 250 kbar

and strains in excess of 20% in a diamond anvil cell. The radial pressure

distribution in the cell was measured with the fluorescent ruby R1 line method

to ± 1 kbar. An analysis of the measured pressure distribution indicates a

critical shear stress of 8.5 kbar and a pressure coefficient of the critical

shear stress of 0.0039. The critical shear stress is about 30% lower than

the one measured with conventional methods. The decrease is ascribed to work

softening, and a work softening coefficient do/de 4 1.5 is derived. The pressure

coefficient is similar to that of a PdSi base metallic glass and crystalline

metals.
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Figure Captions

Fig. 1 Diamond pressure cell.

Fig. 2 Measured pressure distribution of Fe 40Ni4 P 4B6

Fig. 3 Cross sectional view of specimen after loading.

Fig. 4 Measured pressure distribution of Fe 40Ni 40P4B6 after 2 step loading.

Fig. 5 Comparison of experimental data of Fig. 2 with prediction of eq. 21
T-8.5 Kbar; § - 0.0039.

Fig. 6 Comparison of experimental data of Fig. 2 with prediction of eq. 21
T-10.5 Kbar; § u 0.0039.

Fig. 7 Decomposition of experimental data of Fig. 4 into slipping and sticking
regimes. (For details see text).
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